Online Brochure Printing Fridley Mn

 

High Quality Business Cards in Fridley Mn

Digital printing in Minnesota has been a door opener for many businesses. Because printers sell the same thing as everyone else, everyone tries to claim that their service, quality and price are better than others. For this reason, every printer has to find something that would separate them from everyone else. And some business owners find that they have increased productivity after using digital technology and short run processes. Somehow, these gains can be credited to a combination of better pricing and more efficient press performance. Let’s say you have greeting cards that need to be printed. Obsolete inventory through the use of short run digital press can be eliminated.

Business Card Design

High Quality Business Cards in Fridley Mn

This is because with this technology you can print only the needed cards, thus, resulting to orders printed in the exact quantity required. But just the same this kind of printing system is not for everyone. There are risks and changes that need to be dealt with. Nevertheless, the printing industry will continue to change and improve in the years to come. Thus, all business owners and companies have to do is to determine whether this certain printing technique is what they need.

Digital Printing + Short Run Process

Label Printing Services For other uses, see Kodak (disambiguation). The Eastman Kodak Company (referred to simply as Kodak) is an American technology company that produces imaging products with its historic basis on photography. The company is headquartered in Rochester, New York and is incorporated in New Jersey.[4] Kodak provides packaging, functional printing, graphic communications and professional services for businesses around the world. Its main business segments are Print Systems, Enterprise Inkjet Systems, Micro 3D Printing and Packaging, Software and Solutions, and Consumer and Film.[5][6][7] It is best known for photographic film products. Kodak was founded by George Eastman and Henry A. Strong on September 4, 1888. During most of the 20th century, Kodak held a dominant position in photographic film. The company's ubiquity was such that its "Kodak moment" tagline entered the common lexicon to describe a personal event that was demanded to be recorded for posterity.[8] Kodak began to struggle financially in the late 1990s, as a result of the decline in sales of photographic film and its slowness in transitioning to digital photography.[9] As a part of a turnaround strategy, Kodak began to focus on digital photography and digital printing, and attempted to generate revenues through aggressive patent litigation.[10][11] In January 2012, Kodak filed for Chapter 11 bankruptcy protection in the United States District Court for the Southern District of New York.[12][13][14] In February 2012, Kodak announced that it would stop making digital cameras, pocket video cameras and digital picture frames and focus on the corporate digital imaging market.[15] In August 2012, Kodak announced its intention to sell its photographic film, commercial scanners and kiosk operations, as a measure to emerge from bankruptcy, but not its motion picture film operations.[16] In January 2013, the Court approved financing for Kodak to emerge from bankruptcy by mid 2013.[17][18] Kodak sold many of its patents for approximately $525,000,000 to a group of companies (including Apple, Google, Facebook, Amazon, Microsoft, Samsung, Adobe Systems and HTC) under the names Intellectual Ventures and RPX Corporation.[19][20] On September 3, 2013, the company emerged from bankruptcy having shed its large legacy liabilities and exited several businesses.[21] Personalized Imaging and Document Imaging are now part of Kodak Alaris, a separate company owned by the UK-based Kodak Pension Plan.[22][23] On March 12, 2014, it announced that the board of directors had elected Jeffrey J. Clarke as chief executive officer and a member of its board of directors.[24][25] The Kodak factory and main office in Rochester, circa 1910 From the company's founding by George Eastman in 1888, Kodak followed the razor and blades strategy of selling inexpensive cameras and making large margins from consumables – film, chemicals and paper. As late as 1976, Kodak commanded 90% of film sales and 85% of camera sales in the U.S.[26] Japanese competitor Fujifilm entered the U.S. market (via Fuji Photo Film U.S.A.) with lower-priced film and supplies, but Kodak did not believe that American consumers would ever desert its brand.[27] Kodak passed on the opportunity to become the official film of the 1984 Los Angeles Olympics; Fuji won these sponsorship rights, which gave it a permanent foothold in the marketplace. Fuji opened a film plant in the U.S., and its aggressive marketing and price cutting began taking market share from Kodak. Fuji went from a 10% share in the early 1990s to 17% in 1997. Fuji also made headway into the professional market with specialty transparency films such as Velvia and Provia, which competed successfully with Kodak's signature professional product, Kodachrome, but used the more economical and common E-6 processing machines which were standard in most processing labs, rather than the dedicated machines required by Kodachrome. Fuji's films soon also found a competitive edge in higher-speed negative films, with a tighter grain structure. In May 1995, Kodak filed a petition with the US Commerce Department under section 301 of the Commerce Act arguing that its poor performance in the Japanese market was a direct result of unfair practices adopted by Fuji. The complaint was lodged by the United States with the World Trade Organization.[28] On January 30, 1998, the WTO announced a "sweeping rejection of Kodak's complaints" about the film market in Japan. Kodak's financial results for the year ending December 1997 showed that company's revenues dropped from $15.97 billion in 1996 to $14.36 billion in 1997, a fall of more than 10%; its net earnings went from $1.29 billion to just $5 million for the same period. Kodak's market share declined from 80.1% to 74.7% in the United States, a one-year drop of five percentage points that had observers suggesting that Kodak was slow to react to changes and underestimated its rivals.[29][30][31][31] Although from the 1970s both Fuji and Kodak recognized the upcoming threat of digital photography, and although both sought diversification as a mitigation strategy, Fuji was more successful at diversification.[27] The Kodak 'K' logo was introduced in 1971. The version seen here – with the 'Kodak' name in a more modern typeface – was used from 1987 until the logo's discontinuation in 2006, but later used again in 2016[32] Kodak logo from 2006 to 2016 Although Kodak developed a digital camera in 1975, the first of its kind, the product was dropped for fear it would threaten Kodak's photographic film business.[33][34] In the 1990s, Kodak planned a decade-long journey to move to digital technology. CEO George M. C. Fisher reached out[clarification needed] to Microsoft and other new consumer merchandisers. Apple's pioneering QuickTake consumer digital cameras, introduced in 1994, had the Apple label but were produced by Kodak. The DC-20 and DC-25 launched in 1996. Overall, though, there was little implementation of the new digital strategy. Kodak's core business faced no pressure from competing technologies, and as Kodak executives could not fathom a world without traditional film there was little incentive to deviate from that course. Consumers gradually switched to the digital offering from companies such as Sony. In 2001 film sales dropped, which was attributed by Kodak to the financial shocks caused by the September 11 attacks. Executives hoped that Kodak might be able to slow the shift to digital through aggressive marketing.[35] Under Daniel Carp, Fisher's successor as CEO, Kodak made its move in the digital camera market, with its EasyShare family of digital cameras. Kodak spent tremendous resources studying customer behavior, finding out that women in particular loved taking digital photos but were frustrated in moving them to their computers. This key unmet consumer need became a major opportunity. Once Kodak got its product development machine started, it released a wide range of products which made it easy to share photos via PCs. One of their key innovations was a printer dock, where consumers could insert their cameras into this compact device, press a button, and watch their photos roll out. By 2005, Kodak ranked No. 1 in the U.S. in digital camera sales that surged 40% to $5.7 billion.[36] Despite the high growth, Kodak failed to anticipate how fast digital cameras became commodities, with low profit margins, as more companies entered the market in the mid-2000s.[37] In 2001 Kodak held the No. 2 spot in U.S. digital camera sales (behind Sony) but it lost $60 on every camera sold, while there was also a dispute between employees from its digital and film divisions.[38] The film business, where Kodak enjoyed high profit margins, fell 18% in 2005. The combination of these two factors resulted in disappointing profits overall.[35] Its digital cameras soon became undercut by Asian competitors that could produce their offerings more cheaply. Kodak had a 27% market-leading share in 1999, that dwindled to 15% by 2003.[38] In 2007 Kodak was No. 4 in U.S. digital camera sales with a 9.6% share, and by 2010 it held 7% in seventh place behind Canon, Sony, Nikon and others, according to research firm IDC.[39] Also an ever-smaller percentage of digital pictures were being taken on dedicated digital cameras, being gradually displaced in the late 2000s by cameras on cellphones, smartphones, and tablets. The decline of camera film to digital greatly affected Kodak's business. Kodak's main headquarters in Rochester, New York Kodak then began a strategy shift: Previously Kodak had done everything in-house, but CEO Antonio Pérez shut down film factories and eliminated 27,000 jobs as it outsourced its manufacturing.[40] Pérez invested heavily in digital technologies and new services that capitalized on its technology innovation to boost profit margins.[35] He also spent hundreds of millions of dollars to build up a high-margin printer ink business to replace shriveling film sales. Kodak's ink strategy rejected the razor and blades business model used by the dominant market leader Hewlett-Packard in that Kodak's printers were expensive but the ink was cheaper.[41] As of 2011, these new lines of inkjet printers were said to be on verge of turning a profit, although some analysts were skeptical as printouts had been replaced gradually by electronic copies on computers, tablets, and smartphones.[41] Home photograph printers, high-speed commercial inkjet presses, workflow software, and packaging were viewed as the company's new core businesses, with sales from those four businesses projected to double to nearly $2 billion in revenue in 2013 and account for 25% of all sales. However, while Kodak named home printers as a core business as late as August 2012, at the end of September declining sales forced Kodak to announce an exit from the consumer inkjet market.[42] Kodak has also turned to litigation in order to generate revenue.[10][11] In 2010, it received $838 million from patent licensing that included a settlement with LG.[29] In 2011, despite the turnaround progress, Kodak rapidly used up its cash reserves, stoking fears of bankruptcy; it had $957 million in cash in June 2011, down from $1.6 billion in January 2001.[43] In 2011, Kodak reportedly explored selling off or licensing its vast portfolio of patents in order to stave off bankruptcy.[43] By January 2012, analysts suggested that the company could enter bankruptcy followed by an auction of its patents, as it was reported to be in talks with Citigroup to provide debtor-in-possession financing.[13][44] This was confirmed on January 19, 2012, when the company filed for Chapter 11 bankruptcy protection and obtained a $950 million, 18-month credit facility from Citigroup to enable it to continue operations.[12][13][14] Under the terms of its bankruptcy protection, Kodak had a deadline of February 15, 2013 to produce a reorganization plan.[45] In April 2013, Kodak showed its first Micro Four Thirds camera, to be manufactured by JK Imaging.[46][47] On September 3, 2013, Kodak announced that it emerged from bankruptcy as a technology company focused on imaging for business.[21] Its main business segments are Digital Printing & Enterprise and Graphics, Entertainment & Commercial Films.[5] On March 12, 2014, Kodak announced that Jeffrey J. Clarke had been named the new CEO.[48] On January 1, 2015, Kodak announced a new five business division structure; Print Systems, Enterprise Inkjet Systems, Micro 3D Printing and Packaging, Software and Solutions, and Consumer and Film.[7] An original Kodak camera, complete with box, camera, case, felt lens plug, manual, memorandum and viewfinder card An advertisement from The Photographic Herald and Amateur Sportsman (November 1889) Advertisement for a folding "pocket" Kodak camera (August 1900) A Brownie No 2. camera Eastman Kodak Non Curling 116 Film (Expired: 1925) Kodak Camera Center, Tennessee, ca. 1930-1945 Kodachrome II - Film for color slides Main article: List of products manufactured by Kodak Kodak provides packaging, functional printing, graphic communications and professional services for businesses around the world.[6] Its main business segments are Print Systems, Enterprise Inkjet Systems, Micro 3D Printing and Packaging, Software and Solutions, and Consumer and Film.[7] Kodak provides high-speed, high-volume commercial inkjet, and color and black-and-white electrophotographic printing equipment and related consumables and services.[105] It has an installed base of more than 5,000 units. Its Prosper platform uses Stream inkjet technology, which delivers a continuous flow of ink that enables constant and consistent operation, with uniform size and accurate placement, even at very high print speeds.[106] Applications for Prosper include publishing, commercial print, direct mail, and packaging. The business also includes the customer base of Kodak VersaMark products.[107] The NexPress platform is used for printing short-run, personalized print applications for purposes such as direct mail, books, marketing collateral and photo products. The Digimaster platform uses monochrome electrophotographic printing technology to create high-quality printing of statements, short-run books, corporate documentation, manuals and direct mail.[106][108][109] Kodak designs and manufactures products for flexography printing. Its Flexcel[110] line of flexo printing systems allow label printers to produce their own digital plates for customized flexo printing and flexible printed packaging. The company currently has strategic relationships with worldwide touch-panel sensor leaders, such as the partnerships with UniPixel announced on April 16, 2013 and Kingsbury Corp. launched on June 27, 2013.[111][112][113] Enterprise professional services offers print and managed media services, brand protection solutions and services, and document management services to enterprise customers, including government, pharmaceuticals, and health, consumer and luxury good products, retail and finance. In 1997, Heidelberg Printing Machines AG and Eastman Kodak Co. had created the Nexpress Solutions LLC joint venture to develop a digital color printing press for the high-end market segment. Heidelberg acquired Eastman Kodak Co.'s Office Imaging black and white digital printing activities in 1999. In 2000, they had launched Digimaster 9110 - Black & White Production Printer and NexPress 2100 Digital Color Press. In March 2004, Heidelberg transferred its Digital Print division to Eastman Kodak Co.[114] under mutual agreement. Kodak continues to research and develop Digital Printing Systems and introduced more products. At present, Kodak has commercial Web-fed presses, commercial imprinting systems - Prosper, VersaMark and commercial sheet-fed press - NexPress digital production color press, DIGIMASTER HD digital black and white production printer.[115] Kodak entered into consumer inkjet photo printers in a joint venture with manufacturer Lexmark in 1999 with the Kodak Personal Picture Maker. In February 2007, Kodak re-entered the market with a new product line of All-In-One (AiO) inkjet printers that employ several technologies marketed as Kodacolor Technology. Advertising emphasizes low price for ink cartridges rather than for the printers themselves.[116] Kodak announced plans to stop selling inkjet printers in 2013 as it focuses on commercial printing, but will still sell ink.[117] Kodak's graphics business consists of computer to plate (CTP) devices, which Kodak first launched in 1995 when the company introduced the first thermal CTP to market. In CTP, an output device exposes a digital image using SQUAREspot laser imaging technology directly to an aluminum surface (printing plate), which is then mounted onto a printing press to reproduce the image. Kodak's Graphics portfolio includes front-end controllers, production workflow software, CTP output devices, and digital plates. Kodak’s Global Technical Services ("GTS") for Commercial Imaging is focused on selling service contracts for Kodak products, including the following service categories: field services, customer support services, educational services, and professional services. Kodak's Entertainment Imaging and Commercial Film group ("E&CF") encompasses its motion picture film business, providing motion imaging products (camera negative, intermediate, print and archival film), services and technology for the professional motion picture and exhibition industries. E&CF also offers Aerial and Industrial Films including KODAK Printed Circuit Board film, and delivers external sales for the company’s component businesses: Polyester Film, Specialty Chemicals, Inks and Dispersions and Solvent Recovery. The Kodak company played a role in the invention and development of the motion picture industry. Many cinema and TV productions are shot on Kodak film stocks.[118] The company helped set the standard of 35mm film, and introduced the 16mm film format for home movie use and lower budget film productions. The home market-oriented 8mm and Super 8 formats were also developed by Kodak. Kodak also entered the professional television production video tape market, briefly in the mid-1980s, under the product portfolio name of Eastman Professional Video Tape Products. In 1990, Kodak launched a Worldwide Student Program working with university faculty throughout the world to help nurture the future generation of film-makers. Kodak formed Educational Advisory Councils in the US, Europe and Asia made up of deans and chairs of some of the most prestigious film schools throughout the world to help guide the development of their program. Kodak previously owned the visual effects film post-production facilities Cinesite in Los Angeles and London and also LaserPacific in Los Angeles. Kodak sold Cinesite to Endless LLP, an independent British private equity house.[119] Kodak previously sold LaserPacific and its subsidiaries Laser-Edit, Inc, and Pacific Video, Inc., in April 2010 for an undisclosed sum to TeleCorps Holdings, Inc. Kodak also sold Pro-Tek Media Preservation Services, a film storage company in Burbank, California, in October 2013.[120] Aside from technical phone support for its products, Kodak offers onsite service for other devices such as document scanners, data storage systems (optical, tape, and disk), printers, inkjet printing presses, microfilm/microfiche equipment, photograph kiosks, and photocopiers, for which it despatches technicians who make repairs in the field. Kodak markets Picture CDs and other photo products such as calendars, photo books and photo enlargements through retail partners such as CVS, Walmart and Target and through its Kodak Gallery online service, formerly known as Ofoto. A Kodak Instamatic 104 On January 13, 2004, Kodak announced it would stop marketing traditional still film cameras (excluding disposable cameras) in the United States, Canada and Western Europe, but would continue to sell film cameras in India, Latin America, Eastern Europe and China.[121] By the end of 2005, Kodak ceased manufacturing cameras that used the Advanced Photo System. Kodak licensed the manufacture of Kodak branded cameras to Vivitar in 2005 and 2006. After 2007 Kodak did not license the manufacture of any film camera with the Kodak name. After losing a patent battle with Polaroid Corporation, Kodak left the instant camera business on January 9, 1986. The Kodak instant camera included models known as the Kodamatic and the Colorburst. Polaroid was awarded damages in the patent trial in the amount of $909,457,567, a record at the time. (Polaroid Corp. v. Eastman Kodak Co., U.S. District Court District of Massachusetts, decided October 12, 1990, case no. 76-1634-MA. Published in the U.S. Patent Quarterly as 16 USPQ2d 1481). See also the following cases: Polaroid Corp. v. Eastman Kodak Co., 641 F.Supp. 828 [228 USPQ 305] (D. Mass. 1985), stay denied, 833 F.2d 930 [5 USPQ2d 1080] (Fed. Cir.), aff'd, 789 F.2d 1556 [229 USPQ 561] (Fed. Cir.), cert. denied, 479 U.S. 850 (1986).[122] Kodak was the exclusive supplier of negatives for Polaroid cameras from 1963 until 1969, when Polaroid chose to manufacture its own instant film. As part of its move toward higher end products, Kodak announced on September 15, 2006 that the new Leica M8 camera incorporates Kodak's KAF-10500 image sensor. This was the second recent partnership between Kodak and the German optical manufacturer. In 2011, Kodak sold its Image Sensor Solutions business to Platinum Equity, which subsequently renamed it Truesense Imaging, Inc.[123] Main articles: Kodak DCS and Kodak EasyShare A Kodak Easyshare Z1015 IS digital camera Many of Kodak's early compact digital cameras were designed and built by Chinon Industries, a Japanese camera manufacturer. In 2004, Kodak Japan acquired Chinon and many of its engineers and designers joined Kodak Japan. The Kodak DCS series of digital single-lens reflex cameras and digital camera backs were released by Kodak in the 1990s and 2000s, and discontinued in 2005. They were based on existing 35mm film SLRs from Nikon and Canon and the range included the original Kodak DCS, the first commercially available digital SLR. In July 2006, Kodak announced that Flextronics would manufacture and help design its digital cameras. Kodak first entered the digital picture frame market with the Kodak Smart Picture Frame in the fourth quarter of 2000. It was designed by Weave Innovations and licensed to Kodak with an exclusive relationship with Weave's StoryBox online photo network.[124] Smart Frame owners connected to the network via an analog telephone connection built into the frame. The frame could hold 36 images internally and came with a six-month free subscription to the StoryBox network.[125] Kodak re-entered the digital photo frame market at CES in 2007 with the introduction of four new EasyShare-branded models that were available in sizes from 200 to 280 mm (7.9 to 11.0 in), included multiple memory card slots, and some of which included Wi-Fi capability to connect with the Kodak Gallery—that gallery functionality has now been compromised due to gallery policy changes (see below). Main article: Kodak Gallery In June 2001, Kodak purchased the photo-developing website Ofoto, later renamed Kodak Gallery. The website enables users to upload their photos into albums, publish them into prints, and create mousepads, calendars, etc. On March 1, 2012, Kodak announced that it sold Kodak Gallery to Shutterfly for $23.8 million.[126] Kodak provides scanning technology. Historically this industry began when George Eastman partnered with banks to image checks in the 1920s. Through the development of microfilm technology, Eastman Kodak was able to provide long term document storage. Document imaging was one of the first imaging solutions to move to "digital imaging" technology. Kodak manufactured the first digital document scanners for high speed document imaging. Today Kodak has a full line of document scanners for banking, finance, insurance,[127] healthcare and other vertical industries. Kodak also provides associated document capture software and business process services. Eastman Kodak acquired the Bowe Bell & Howell scanner division in September 2009. Kodak continues to produce specialty films and film for newer and more popular consumer formats, but it has discontinued the manufacture of film in older and less popular formats. Kodak is a leading producer of silver halide (AgX) paper used for printing from film and digital images. Minilabs located in retail stores and larger central photo lab operations (CLOs) use silver halide paper for photo printing. In 2005 Kodak announced it would stop producing black-and-white photo paper.[128] A Kodak NexPress 2500 digital printing press Kodak is a manufacturer of self-service photo kiosks that produce "prints in seconds" from multiple sources including digital input, scanned prints, Facebook, the Kodak Gallery and orders placed on-line using thermosublimation printers. The company has placed over 100,000 Picture Kiosks in retail locations worldwide.[129] Employing similar technology, Kodak also offers larger printing systems with additional capabilities including duplex greeting cards, large format poster printers, photobooks and calendars under the brand name "APEX".[130] 1900 Kodak ad The letter k was a favorite of Eastman's; he is quoted as saying, "it seems a strong, incisive sort of letter."[131] He and his mother devised the name Kodak with an anagrams set. Eastman said that there were three principal concepts he used in creating the name: it should be short, easy to pronounce, and not resemble any other name or be associated with anything else.[132] The Kodak Research Laboratories were founded in 1912 with Kenneth Mees as the first director.[133] Principal components of the Kodak Research Laboratories were the Photographic Research Laboratories and then the Imaging Research Laboratories. Additional organizations included the Corporate Research Laboratories. Over nearly a century, scientists at these laboratories produced thousands of patents and scientific publications.[citation needed] George Eastman In 2005, Kodak Canada donated its entire historic company archives to Ryerson University in Toronto. The Ryerson University Library also acquired an extensive collection of materials on the history of photography from the private collection of Nicholas M. & Marilyn A. Graver of Rochester, New York.[134] The Kodak Archives, begun in 1909, contain the company's Camera Collection, historic photos, files, trade circulars, Kodak magazines, price lists, daily record books, equipment, and other ephemera. It includes the contents of the Kodak Heritage Collection Museum, a museum established in 1999 for Kodak Canada's centennial that Kodak closed in 2005 along with the company's entire 'Kodak Heights' manufacturing campus in Mount Dennis, Toronto.[135] See also: George Eastman House. On March 26, 2007, the Council of Better Business Bureaus (CBBB) announced that Eastman Kodak was resigning its national membership in the wake of expulsion proceedings initiated by the CBBB board of directors.[136] In 2006, Kodak notified the BBB of Upstate New York that it would no longer accept or respond to consumer complaints submitted by them. In prior years, Kodak responded by offering consumers an adjustment or an explanation of the company’s position. The BBB file contains consumer complaints of problems with repairs of Kodak digital cameras, as well as difficulty communicating with Kodak customer service. Among other complaints, consumers say that their cameras broke and they were charged for repairs when the failure was not the result of any damage or abuse. Some say their cameras failed again after being repaired. Kodak said its customer service and customer privacy teams concluded that 99% of all complaints forwarded by the BBB already were handled directly with the customer. Brian O’Connor, Kodak chief privacy officer, said the company was surprised by the news release distributed by the Better Business Bureau: It is inaccurate in the facts presented as well as those the BBB chose to omit. Ironically, we ultimately decided to resign our membership because we were extremely unhappy with the customer service we received from the local office of the BBB. After years of unproductive discussions with the local office regarding their Web site postings about Kodak, which in our view were consistently inaccurate, we came to the conclusion that their process added no value to our own. Our commitment to our customers is unwavering. That will not change. What has changed is that, for us, the BBB's customer complaint process has become redundant, given the multiple and immediate ways that customers have to address their concerns directly with Kodak.[137] In 2010, Apple filed a patent-infringement claim against Kodak. On May 12, 2011, Judge Robert Rogers rejected Apple's claims that two of its digital photography patents were being violated by Kodak.[138] On July 1, 2011, the U.S. International Trade Commission partially reversed a January decision by an administrative law judge stating that neither Apple nor Research in Motion had infringed upon Kodak's patents. The ITC remanded the matter for further proceedings before the ALJ.[139]

Commercial Digital Print, Color Copies

The earliest surviving camera photograph, 1826 or 1827, known as View from the Window at Le Gras The history of photography has roots in remote antiquity with the discovery of two critical principles, that of the camera obscura (darkened or obscured room or chamber) and the fact that some substances are visibly altered by exposure to light, as discovered by observation. As far as is known, nobody thought of bringing these two phenomena together to capture camera images in permanent form until around 1800, when Thomas Wedgwood made the first reliably documented, although unsuccessful attempt. In the mid-1820s, Nicéphore Niépce succeeded, but several days of exposure in the camera were required and the earliest results were very crude. Niépce's associate Louis Daguerre went on to develop the daguerreotype process, the first publicly announced and commercially viable photographic process. The daguerreotype required only minutes of exposure in the camera, and produced clear, finely detailed results. It was commercially introduced in 1839, a date generally accepted as the birth year of practical photography.[1][2] The metal-based daguerreotype process soon had some competition from the paper-based calotype negative and salt print processes invented by William Henry Fox Talbot. Subsequent innovations made photography easier and more versatile. New materials reduced the required camera exposure time from minutes to seconds, and eventually to a small fraction of a second; new photographic media were more economical, sensitive or convenient, including roll films for casual use by amateurs. In the mid-20th century, developments made it possible for amateurs to take pictures in natural color as well as in black-and-white. The commercial introduction of computer-based electronic digital cameras in the 1990s soon revolutionized photography. During the first decade of the 21st century, traditional film-based photochemical methods were increasingly marginalized as the practical advantages of the new technology became widely appreciated and the image quality of moderately priced digital cameras was continually improved. The coining of the word "photography" is usually attributed to Sir John Herschel in 1839. It is based on the Greek φῶς (phōs), (genitive: phōtós) meaning "light", and γραφή (graphê), meaning "drawing, writing", together meaning "drawing with light".[3] A camera obscura used for drawing Photography is the result of combining several different technical discoveries. Long before the first photographs were made, Greek mathematicians Aristotle and Euclid described a pinhole camera in the 5th and 4th centuries BCE.[4][5] In the 6th century CE, Byzantine mathematician Anthemius of Tralles used a type of camera obscura in his experiments[6] Ibn al-Haytham (Alhazen) (965 in Basra – c. 1040 in Cairo) studied the camera obscura and pinhole camera,[5][7] Albertus Magnus (1193/1206–80) discovered silver nitrate, and Georges Fabricius (1516–71) discovered silver chloride. Daniel Barbaro described a diaphragm in 1568. Wilhelm Homberg described how light darkened some chemicals (photochemical effect) in 1694. The novel Giphantie (by the French Tiphaigne de la Roche, 1729–74) described what could be interpreted as photography. The earliest known surviving heliographic engraving, made in 1825. It was printed from a metal plate made by Joseph Nicéphore Niépce with his "heliographic process".[8] The plate was exposed under an ordinary engraving and copied it by photographic means. This was a step towards the first permanent photograph from nature taken with a camera obscura. In 1614, Angelo Sala demonstrated that "powdered silver nitrate is blackened by the sun",[9] as was paper that was wrapped around it. This discovery of the sun's effect on powdered silver nitrate was not supported and was subsequently disregarded by then-respected scientists who said that his discovery "had no practical application." Around 1717,[n 1] Johann Heinrich Schulze, a German professor of anatomy and physics, set down a bottle containing silver nitrate and chalk by the window and unintentionally in the path of incoming light from the sun. The mixture, unsurprisingly, turned dark. But what he noticed and found to be strange was that part of it remained white and formed a line across the bottle. He then observed a cord hanging down and going across in front of the window, which he found out to be the cause. On further examination, he found that the entire mixture inevitably reverted to its original white color. Experimenting further, Schulze succeeded in transferring words he pasted on the bottle printed into the substance.[10] Describing his achievement, Schulze wrote that “[t]he sun’s rays, where they hit the glass through the cut-out parts of the paper, wrote each word or sentence on the chalk precipitate so exactly and distinctly that many who were curious about the experiment but ignorant of its nature took occasion to attribute the thing to some sort of trick.”[11] He put the silver nitrate in an oven, which had no effect on its color. This proved to him, definitively, that heat had not facilitated the transformation, as popularly suspected. Rather, it was the light.[11] In 1777, the chemist Carl Wilhelm Scheele was studying the more intrinsically light-sensitive silver chloride and determined that light darkened it by disintegrating it into microscopic dark particles of metallic silver. Of greater potential usefulness, Scheele found that ammonia dissolved the silver chloride but not the dark particles. This discovery, which could have been used to stabilize or "fix" a camera image captured with silver chloride, was little-noticed at the time and unknown to the earliest photography experimenters. It was not until around the year 1800 that Thomas Wedgwood made the first known attempt to capture the image in a camera obscura by means of a light-sensitive substance. He used paper or white leather treated with silver nitrate. Although he succeeded in capturing the shadows of objects placed on the surface in direct sunlight, and even made shadow-copies of paintings on glass, it was reported in 1802 that "[t]he images formed by means of a camera obscura have been found too faint to produce, in any moderate time, an effect upon the nitrate of silver." The shadow images eventually darkened all over because "[n]o attempts that have been made to prevent the uncoloured part of the copy or profile from being acted upon by light have as yet been successful."[12] Wedgwood may have prematurely abandoned his experiments due to frail and failing health; he died aged 34 in 1805. "Boulevard du Temple", a daguerreotype made by Louis Daguerre in 1838, is generally accepted as the earliest photograph to include people. It is a view of a busy street, but because the exposure lasted for several minutes the moving traffic left no trace. Only the two men near the bottom left corner, one of them apparently having his boots polished by the other, remained in one place long enough to be visible. In 1816 Nicéphore Niépce, using paper coated with silver chloride, succeeded in photographing the images formed in a small camera, but the photographs were negatives, darkest where the camera image was lightest and vice versa, and they were not permanent in the sense of being reasonably light-fast; like earlier experimenters, Niépce could find no way to prevent the coating from darkening all over when it was exposed to light for viewing. Disenchanted with silver salts, he turned his attention to light-sensitive organic substances.[13] Robert Cornelius, self-portrait, October or November 1839, an approximately quarter plate size daguerreotype. On the back is written, "The first light picture ever taken". One of the oldest photographic portraits known, 1839 or 1840,[14] made by John William Draper of his sister, Dorothy Catherine Draper Not all early portraits are stiff and grim-faced records of a posing ordeal. This pleasant expression was captured by Mary Dillwyn in Wales in 1853. The oldest surviving photograph of the image formed in a camera was created by Niépce in 1826 or 1827.[1] It was made on a polished sheet of pewter and the light-sensitive substance was a thin coating of bitumen, a naturally occurring petroleum tar, which was dissolved in lavender oil, applied to the surface of the pewter and allowed to dry before use.[15] After a very long exposure in the camera (traditionally said to be eight hours, but now believed to be several days),[16] the bitumen was sufficiently hardened in proportion to its exposure to light that the unhardened part could be removed with a solvent, leaving a positive image with the light areas represented by hardened bitumen and the dark areas by bare pewter.[15] To see the image plainly, the plate had to be lit and viewed in such a way that the bare metal appeared dark and the bitumen relatively light.[13] In partnership, Niépce in Chalon-sur-Saône and Louis Daguerre in Paris refined the bitumen process,[17] substituting a more sensitive resin and a very different post-exposure treatment that yielded higher-quality and more easily viewed images. Exposure times in the camera, although substantially reduced, were still measured in hours.[13] Niépce died suddenly in 1833, leaving his notes to Daguerre. More interested in silver-based processes than Niépce had been, Daguerre experimented with photographing camera images directly onto a mirror-like silver-surfaced plate that had been fumed with iodine vapor, which reacted with the silver to form a coating of silver iodide. As with the bitumen process, the result appeared as a positive when it was suitably lit and viewed. Exposure times were still impractically long until Daguerre made the pivotal discovery that an invisibly slight or "latent" image produced on such a plate by a much shorter exposure could be "developed" to full visibility by mercury fumes. This brought the required exposure time down to a few minutes under optimum conditions. A strong hot solution of common salt served to stabilize or fix the image by removing the remaining silver iodide. On 7 January 1839, this first complete practical photographic process was announced at a meeting of the French Academy of Sciences,[18] and the news quickly spread.[19] At first, all details of the process were withheld and specimens were shown only at Daguerre's studio, under his close supervision, to Academy members and other distinguished guests.[20] Arrangements were made for the French government to buy the rights in exchange for pensions for Niépce's son and Daguerre and present the invention to the world (with the exception of Great Britain, where an agent for Daguerre patented it) as a free gift.[21] Complete instructions were made public on 19 August 1839.[22] Known as the Daguerreotype process, it was the most common commercial process until the late 1850s. It was superseded by the collodion process. After reading early reports of Daguerre's invention, Henry Fox Talbot, who had succeeded in creating stabilized photographic negatives on paper in 1835, worked on perfecting his own process. In early 1839, he acquired a key improvement, an effective fixer, from his friend John Herschel, a polymath scientist who had previously shown that hyposulfite of soda (commonly called "hypo" and now known formally as sodium thiosulfate) would dissolve silver salts.[23] News of this solvent also benefited Daguerre, who soon adopted it as a more efficient alternative to his original hot salt water method.[24] A calotype showing the American photographer Frederick Langenheim, circa 1849. Note that the caption on the photo calls the process "Talbotype". Talbot's early silver chloride "sensitive paper" experiments required camera exposures of an hour or more. In 1840, Talbot invented the calotype process, which, like Daguerre's process, used the principle of chemical development of a faint or invisible "latent" image to reduce the exposure time to a few minutes. Paper with a coating of silver iodide was exposed in the camera and developed into a translucent negative image. Unlike a daguerreotype, which could only be copied by rephotographing it with a camera, a calotype negative could be used to make a large number of positive prints by simple contact printing. The calotype had yet another distinction compared to other early photographic processes, in that the finished product lacked fine clarity due to its translucent paper negative. This was seen as a positive attribute for portraits because it softened the appearance of the human face. Talbot patented this process,[25] which greatly limited its adoption, and spent many years pressing lawsuits against alleged infringers. He attempted to enforce a very broad interpretation of his patent, earning himself the ill will of photographers who were using the related glass-based processes later introduced by other inventors, but he was eventually defeated. Nonetheless, Talbot's developed-out silver halide negative process is the basic technology used by chemical film cameras today. Hippolyte Bayard had also developed a method of photography but delayed announcing it, and so was not recognized as its inventor. In 1839, John Herschel made the first glass negative, but his process was difficult to reproduce. Slovene Janez Puhar invented a process for making photographs on glass in 1841; it was recognized on June 17, 1852 in Paris by the Académie Nationale Agricole, Manufacturière et Commerciale.[26] In 1847, Nicephore Niépce's cousin, the chemist Niépce St. Victor, published his invention of a process for making glass plates with an albumen emulsion; the Langenheim brothers of Philadelphia and John Whipple and William Breed Jones of Boston also invented workable negative-on-glass processes in the mid-1840s.[27] In 1851 Frederick Scott Archer invented the collodion process.[28] Photographer and children's author Lewis Carroll used this process. (Carroll refers to the process as "Tablotype" [sic] in the story "A Photographer's Day Out")[29] Roger Fenton's assistant seated on Fenton's photographic van, Crimea, 1855 Herbert Bowyer Berkeley experimented with his own version of collodion emulsions after Samman[disambiguation needed] introduced the idea of adding dithionite to the pyrogallol developer.[citation needed] Berkeley discovered that with his own addition of sulfite, to absorb the sulfur dioxide given off by the chemical dithionite in the developer, that dithionite was not required in the developing process. In 1881 he published his discovery. Berkeley's formula contained pyrogallol, sulfite and citric acid. Ammonia was added just before use to make the formula alkaline. The new formula was sold by the Platinotype Company in London as Sulpho-Pyrogallol Developer.[30] Nineteenth-century experimentation with photographic processes frequently became proprietary. The German-born, New Orleans photographer Theodore Lilienthal successfully sought legal redress in an 1881 infringement case involving his "Lambert Process" in the Eastern District of Louisiana. General view of The Crystal Palace at Sydenham by Philip Henry Delamotte, 1854 A mid-19th century "Brady stand" armrest table, used to help subjects keep still during long exposures. It was named for famous US photographer Mathew Brady. An 1855 cartoon satirized problems with posing for Daguerreotypes: slight movement during exposure resulted in blurred features, red-blindness made rosy complexions look dark. In this 1893 multiple-exposure trick photo, the photographer appears to be photographing himself. It satirizes studio equipment and procedures that were nearly obsolete by then. Note the clamp to hold the sitter's head still. A comparison of common print sizes used in photographic studios during the 19th century The daguerreotype proved popular in response to the demand for portraiture that emerged from the middle classes during the Industrial Revolution.[citation needed] This demand, which could not be met in volume and in cost by oil painting, added to the push for the development of photography. Roger Fenton and Philip Henry Delamotte helped popularize the new way of recording events, the first by his Crimean war pictures, the second by his record of the disassembly and reconstruction of The Crystal Palace in London. Other mid-nineteenth-century photographers established the medium as a more precise means than engraving or lithography of making a record of landscapes and architecture: for example, Robert Macpherson's broad range of photographs of Rome, the interior of the Vatican, and the surrounding countryside became a sophisticated tourist's visual record of his own travels. In America, by 1851 a broadside by daguerreotypist Augustus Washington was advertising prices ranging from 50 cents to $10.[31] However, daguerreotypes were fragile and difficult to copy. Photographers encouraged chemists to refine the process of making many copies cheaply, which eventually led them back to Talbot's process. Ultimately, the photographic process came about from a series of refinements and improvements in the first 20 years. In 1884 George Eastman, of Rochester, New York, developed dry gel on paper, or film, to replace the photographic plate so that a photographer no longer needed to carry boxes of plates and toxic chemicals around. In July 1888 Eastman's Kodak camera went on the market with the slogan "You press the button, we do the rest". Now anyone could take a photograph and leave the complex parts of the process to others, and photography became available for the mass-market in 1901 with the introduction of the Kodak Brownie. The first durable color photograph, taken by Thomas Sutton in 1861 A practical means of color photography was sought from the very beginning. Results were demonstrated by Edmond Becquerel as early as 1848, but exposures lasting for hours or days were required and the captured colors were so light-sensitive they would only bear very brief inspection in dim light. The first durable color photograph was a set of three black-and-white photographs taken through red, green, and blue color filters and shown superimposed by using three projectors with similar filters. It was taken by Thomas Sutton in 1861 for use in a lecture by the Scottish physicist James Clerk Maxwell, who had proposed the method in 1855.[32] The photographic emulsions then in use were insensitive to most of the spectrum, so the result was very imperfect and the demonstration was soon forgotten. Maxwell's method is now most widely known through the early 20th century work of Sergei Prokudin-Gorskii. It was made practical by Hermann Wilhelm Vogel's 1873 discovery of a way to make emulsions sensitive to the rest of the spectrum, gradually introduced into commercial use beginning in the mid-1880s. Two French inventors, Louis Ducos du Hauron and Charles Cros, working unknown to each other during the 1860s, famously unveiled their nearly identical ideas on the same day in 1869. Included were methods for viewing a set of three color-filtered black-and-white photographs in color without having to project them, and for using them to make full-color prints on paper.[33] The first widely used method of color photography was the Autochrome plate, a process inventors and brothers Auguste and Louis Lumière began working on in the 1890s and commercially introduced in 1907.[34] It was based on one of Louis Ducos du Hauron's ideas: instead of taking three separate photographs through color filters, take one through a mosaic of tiny color filters overlaid on the emulsion and view the results through an identical mosaic. If the individual filter elements were small enough, the three primary colors of red, blue, and green would blend together in the eye and produce the same additive color synthesis as the filtered projection of three separate photographs. A color portrait of Samuel Clemens (Mark Twain) by Alvin Langdon Coburn, 1908, made by the recently introduced Autochrome process Autochrome plates had an integral mosaic filter layer with roughly five million previously dyed potato grains per square inch added to the surface. Then through the use of a rolling press, five tons of pressure were used to flatten the grains, enabling every one of them to capture and absorb color and their microscopic size allowing the illusion that the colors are merged together. The final step was adding a coat of the light capturing substance silver bromide after which a color image could be imprinted and developed. In order to see it, reversal processing was used to develop each plate into a transparent positive that could be viewed directly or projected with an ordinary projector. One of the drawbacks of the technology is an exposure time of at least a second was required during the day in bright light and the worse the light is, the time required quickly goes up. An indoor portrait required a few minutes with the subject not being able to move or else the picture would come out blurry. This was because the grains absorbed the color fairly slowly and that a filter of a yellowish-orange color was added to the plate to keep the photograph from coming out excessively blue. Although necessary, the filter had the effect of reducing the amount of light that was absorbed. Another drawback was that the film could only be enlarged so much until the many dots that make up the image become apparent.[34][35] Competing screen plate products soon appeared and film-based versions were eventually made. All were expensive and until the 1930s none was "fast" enough for hand-held snapshot-taking, so they mostly served a niche market of affluent advanced amateurs. A new era in color photography began with the introduction of Kodachrome film, available for 16 mm home movies in 1935 and 35 mm slides in 1936. It captured the red, green, and blue color components in three layers of emulsion. A complex processing operation produced complementary cyan, magenta, and yellow dye images in those layers, resulting in a subtractive color image. Maxwell's method of taking three separate filtered black-and-white photographs continued to serve special purposes into the 1950s and beyond, and Polachrome, an "instant" slide film that used the Autochrome's additive principle, was available until 2003, but the few color print and slide films still being made in 2015 all use the multilayer emulsion approach pioneered by Kodachrome. Main article: Digital photography Walden Kirsch as scanned into the SEAC computer in 1957 In 1957, a team led by Russell A. Kirsch at the National Institute of Standards and Technology developed a binary digital version of an existing technology, the wirephoto drum scanner, so that alphanumeric characters, diagrams, photographs and other graphics could be transferred into digital computer memory. One of the first photographs scanned was a picture of Kirsch's infant son Walden. The resolution was 176x176 pixels with only one bit per pixel, i.e., stark black and white with no intermediate gray tones, but by combining multiple scans of the photograph done with different black-white threshold settings, grayscale information could also be acquired.[36] The charge-coupled device (CCD) is the image-capturing optoelectronic component in first-generation digital cameras. It was invented in 1969 by Willard Boyle and George E. Smith at AT&T Bell Labs as a memory device. The lab was working on the Picturephone and on the development of semiconductor bubble memory. Merging these two initiatives, Boyle and Smith conceived of the design of what they termed "Charge 'Bubble' Devices". The essence of the design was the ability to transfer charge along the surface of a semiconductor. It was Dr. Michael Tompsett from Bell Labs however, who discovered that the CCD could be used as an imaging sensor. The CCD has increasingly been replaced by the active pixel sensor (APS), commonly used in cell phone cameras. These mobile phone cameras are used by billions of people worldwide, dramatically increasing photographic activity and material and also fueling citizen journalism. The web has been a popular medium for storing and sharing photos ever since the first photograph was published on the web by Tim Berners-Lee in 1992 (an image of the CERN house band Les Horribles Cernettes). Today sites and apps such as Flickr, Picasa, Instagram, Imgur and PhotoBucket are used by many millions of people to share their pictures. ^ This date is commonly misreported as 1725 or 1727, an error deriving from the belief that a 1727 publication of Schulze's account of experiments he says he undertook about two years earlier is the original source. In fact, it is a reprint of a 1719 publication and the date of the experiments is therefore circa 1717. The dated contents page of the true original can be seen here (retrieved 21 February 2015)

Bookmark Printing

Digital printing is today’s technology for a fast and affordable solution for most small businesses.

Digital color printing • carbonless forms • Large format printing • Minnesota


Business Brochure Printing Minnesota